Visualisation of time-varying respiratory system elastance in experimental ARDS animal models
نویسندگان
چکیده
BACKGROUND Patients with acute respiratory distress syndrome (ARDS) risk lung collapse, severely altering the breath-to-breath respiratory mechanics. Model-based estimation of respiratory mechanics characterising patient-specific condition and response to treatment may be used to guide mechanical ventilation (MV). This study presents a model-based approach to monitor time-varying patient-ventilator interaction to guide positive end expiratory pressure (PEEP) selection. METHODS The single compartment lung model was extended to monitor dynamic time-varying respiratory system elastance, Edrs, within each breathing cycle. Two separate animal models were considered, each consisting of three fully sedated pure pietrain piglets (oleic acid ARDS and lavage ARDS). A staircase recruitment manoeuvre was performed on all six subjects after ARDS was induced. The Edrs was mapped across each breathing cycle for each subject. RESULTS Six time-varying, breath-specific Edrs maps were generated, one for each subject. Each Edrs map shows the subject-specific response to mechanical ventilation (MV), indicating the need for a model-based approach to guide MV. This method of visualisation provides high resolution insight into the time-varying respiratory mechanics to aid clinical decision making. Using the Edrs maps, minimal time-varying elastance was identified, which can be used to select optimal PEEP. CONCLUSIONS Real-time continuous monitoring of in-breath mechanics provides further insight into lung physiology. Therefore, there is potential for this new monitoring method to aid clinicians in guiding MV treatment. These are the first such maps generated and they thus show unique results in high resolution. The model is limited to a constant respiratory resistance throughout inspiration which may not be valid in some cases. However, trends match clinical expectation and the results highlight both the subject-specificity of the model, as well as significant inter-subject variability.
منابع مشابه
Visualisation of Time-Variant Respiratory System Elastance in ARDS Models.
Model-based mechanical ventilation (MV) can be used to characterise patient-specific condition and response to MV. This paper presents a novel method to visualise respiratory mechanics during MV of patients suffering from acute respiratory distress syndrome. The single compartment lung model is extended to monitor time-varying respiratory system elastance within each breathing cycle. Monitoring...
متن کاملModelling of passive expiration in patients with adult respiratory distress syndrome.
The time-course of volume change during passive expiration preceded by an end-inspiratory hold was studied with a biexponential model in six adult respiratory distress syndrome (ARDS) patients. We measured the initial volumes and time constants of the fast (tau 1), and the slow (tau 2) compartments of expiration, as well as the static elastance of the respiratory system. The results were compar...
متن کاملTime-Varying Respiratory System Elastance: A Physiological Model for Patients Who Are Spontaneously Breathing
BACKGROUND Respiratory mechanics models can aid in optimising patient-specific mechanical ventilation (MV), but the applications are limited to fully sedated MV patients who have little or no spontaneously breathing efforts. This research presents a time-varying elastance (E(drs)) model that can be used in spontaneously breathing patients to determine their respiratory mechanics. METHODS A ti...
متن کاملExpiratory model-based method to monitor ARDS disease state
INTRODUCTION Model-based methods can be used to characterise patient-specific condition and response to mechanical ventilation (MV) during treatment for acute respiratory distress syndrome (ARDS). Conventional metrics of respiratory mechanics are based on inspiration only, neglecting data from the expiration cycle. However, it is hypothesised that expiratory data can be used to determine an alt...
متن کاملExperimental Models of Acute Lung Injury
Although many various models have been improved in order to form human features of Acute Respiratory Distress Syndrome (ARDS) in animals, there is no single animal model that satisfactorily exhibits all of the histopathological components of human ARDS. Therefore, when choosing an ARDS animal model, it is important to consider the ARDS key property to be tested as a study hypothesis and choose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2014